• The Vega star system is one of the most studied in astronomy due to its proximity, brightness, and unique characteristics that challenge our understanding of planet formation and stellar evolution. Located just 25 light-years away from Earth in the constellation Lyra, Vega is a blue-white star and the fifth-brightest star visible in our night sky. Here's a breakdown of the most intriguing features of the Vega system:

    1. Dust Disk Discovery
    Infrared Excess: In the 1980s, the Infrared Astronomical Satellite (IRAS) discovered an excess of infrared radiation from Vega, indicating a dust disk around the star. This disk emits infrared radiation as dust particles are heated by Vega's light, suggesting an early model of a protoplanetary or debris disk.
    Smooth Disk: Unlike other systems like Fomalhaut, Vega’s disk is remarkably smooth, lacking the gaps and rings typically associated with planets disturbing the dust. This smoothness implies that Vega may lack substantial planetary influences or that planets there may be few and more challenging to detect.
    2. Potential "Hot Neptune"
    Astronomers have hypothesized that Vega might host a hot Neptune—a large planet orbiting close to the star, with a mass similar to that of Uranus or Neptune. If present, this planet could slightly perturb the disk, though not enough to create the pronounced structures seen in other systems.
    3. Asteroid Belt Analogy
    Collapse
    Observations suggest that Vega may contain a large asteroid belt similar to our Solar System's, with a spread-out disk of rocky material. This possible asteroid belt might add to the dust observed around Vega and could provide insights into the early formation phases of planetary systems.
    4. Historical and Cultural Significance
    Former Pole Star: Around 14,000 years ago, Earth's axis pointed toward Vega, making it the northern pole star until approximately 12,000 BC. The star held great significance for ancient civilizations due to its prominence.
    Name and Mythology: The name "Vega," originally spelled "Wega," comes from the Arabic "Al Nasr al Waki," meaning "Swooping Eagle." Vega is a cornerstone of the Summer Triangle, a prominent asterism for northern hemisphere skywatchers, along with Altair and Deneb.
    5. Milestones in Astronomy
    First Stellar Spectrum: Vega was the first star to have its spectrum recorded in 1850, helping astronomers study stellar composition and temperature.
    Early Photographic Milestone: It was also the second star, after the Sun, to be photographed, marking a major step in astronomical imaging.
    6. Variable Star Characteristics
    Vega is classified as a Delta Scuti variable, with slight pulsations that cause small changes in its brightness over time. Although minimal, these fluctuations provide valuable data for stellar research and challenge Vega's historic role as a "constant" in brightness.
    7. Future Research and Exploration
    With its dust disk and potential hot Neptune, Vega remains a prime target for studying alternative pathways in planetary system evolution. Optical spectroscopy allows astronomers to analyze parameters such as star formation rates and chemical composition, shedding light on the processes within Vega's disk and its potential for planet formation.
    8. Vega's characteristics—its smooth disk, possible planetary companions, and cultural prominence—continue to intrigue astronomers. Future missions and telescopes may reveal more about this iconic star system, potentially uncovering planets or additional features that reshape our understanding of how stars and planetary systems evolve.
    The Vega star system is one of the most studied in astronomy due to its proximity, brightness, and unique characteristics that challenge our understanding of planet formation and stellar evolution. Located just 25 light-years away from Earth in the constellation Lyra, Vega is a blue-white star and the fifth-brightest star visible in our night sky. Here's a breakdown of the most intriguing features of the Vega system: 1. Dust Disk Discovery Infrared Excess: In the 1980s, the Infrared Astronomical Satellite (IRAS) discovered an excess of infrared radiation from Vega, indicating a dust disk around the star. This disk emits infrared radiation as dust particles are heated by Vega's light, suggesting an early model of a protoplanetary or debris disk. Smooth Disk: Unlike other systems like Fomalhaut, Vega’s disk is remarkably smooth, lacking the gaps and rings typically associated with planets disturbing the dust. This smoothness implies that Vega may lack substantial planetary influences or that planets there may be few and more challenging to detect. 2. Potential "Hot Neptune" Astronomers have hypothesized that Vega might host a hot Neptune—a large planet orbiting close to the star, with a mass similar to that of Uranus or Neptune. If present, this planet could slightly perturb the disk, though not enough to create the pronounced structures seen in other systems. 3. Asteroid Belt Analogy Collapse Observations suggest that Vega may contain a large asteroid belt similar to our Solar System's, with a spread-out disk of rocky material. This possible asteroid belt might add to the dust observed around Vega and could provide insights into the early formation phases of planetary systems. 4. Historical and Cultural Significance Former Pole Star: Around 14,000 years ago, Earth's axis pointed toward Vega, making it the northern pole star until approximately 12,000 BC. The star held great significance for ancient civilizations due to its prominence. Name and Mythology: The name "Vega," originally spelled "Wega," comes from the Arabic "Al Nasr al Waki," meaning "Swooping Eagle." Vega is a cornerstone of the Summer Triangle, a prominent asterism for northern hemisphere skywatchers, along with Altair and Deneb. 5. Milestones in Astronomy First Stellar Spectrum: Vega was the first star to have its spectrum recorded in 1850, helping astronomers study stellar composition and temperature. Early Photographic Milestone: It was also the second star, after the Sun, to be photographed, marking a major step in astronomical imaging. 6. Variable Star Characteristics Vega is classified as a Delta Scuti variable, with slight pulsations that cause small changes in its brightness over time. Although minimal, these fluctuations provide valuable data for stellar research and challenge Vega's historic role as a "constant" in brightness. 7. Future Research and Exploration With its dust disk and potential hot Neptune, Vega remains a prime target for studying alternative pathways in planetary system evolution. Optical spectroscopy allows astronomers to analyze parameters such as star formation rates and chemical composition, shedding light on the processes within Vega's disk and its potential for planet formation. 8. Vega's characteristics—its smooth disk, possible planetary companions, and cultural prominence—continue to intrigue astronomers. Future missions and telescopes may reveal more about this iconic star system, potentially uncovering planets or additional features that reshape our understanding of how stars and planetary systems evolve.
    0 Σχόλια 0 Μοιράστηκε 1χλμ. Views
  • Doing the Devil's Work: The Vatican Owns a Telescope Named Lucifer in Arizona
    The Vatican owns an Infrared Camera named the Lucifer LBT Telescope on Mount Graham in Arizona. All things considered, they might as well call it Lucifer LGBTQ+.
    Doing the Devil's Work: The Vatican Owns a Telescope Named Lucifer in Arizona The Vatican owns an Infrared Camera named the Lucifer LBT Telescope on Mount Graham in Arizona. All things considered, they might as well call it Lucifer LGBTQ+.
    Angry
    1
    3 Σχόλια 1 Μοιράστηκε 752 Views
  • https://holistichealth.one/natural-remedies-for-hair-growth/ The Best Natural Remedies for Hair Regrowth can help you fill in those thinning or balding spots naturally. They can deepen your natural hair color too. Unblock your hair follicles using hormone balancing herbs, essential oils and even proven natural near infrared wavelength light therapies for rapid natural hair regrowth. #hairgrowth #apolecia #hair #hairloss #health
    https://holistichealth.one/natural-remedies-for-hair-growth/ The Best Natural Remedies for Hair Regrowth can help you fill in those thinning or balding spots naturally. They can deepen your natural hair color too. Unblock your hair follicles using hormone balancing herbs, essential oils and even proven natural near infrared wavelength light therapies for rapid natural hair regrowth. #hairgrowth #apolecia #hair #hairloss #health
    HOLISTICHEALTH.ONE
    Natural Remedies for Hair Growth
    Natural Remedies for Hair Growth If you're worried after seeing more hair in your brush or comb and
    Love
    1
    0 Σχόλια 0 Μοιράστηκε 849 Views
  • Massimo Luciani - Structures found in the Great Red Spot area on Jupiter:

    https://english.tachyonbeam.com/2024/06/26/structures-found-in-the-great-red-spot-area-on-jupiter/

    #GreatRedSpot #Jupiter #JamesWebb #SpaceTelescope #JWST #Infrared #Spectroscopy #NIRSpec #SolarSystemScience #PlanetaryScience #AtmosphericPhysics #Physics #Astronomy
    Massimo Luciani - Structures found in the Great Red Spot area on Jupiter: https://english.tachyonbeam.com/2024/06/26/structures-found-in-the-great-red-spot-area-on-jupiter/ #GreatRedSpot #Jupiter #JamesWebb #SpaceTelescope #JWST #Infrared #Spectroscopy #NIRSpec #SolarSystemScience #PlanetaryScience #AtmosphericPhysics #Physics #Astronomy
    ENGLISH.TACHYONBEAM.COM
    Structures found in the Great Red Spot area on Jupiter
    An article published in the journal 'Nature Astronomy' reports the identification of structures in the planet Jupiter's upper atmosphere above the Great Red...
    0 Σχόλια 0 Μοιράστηκε 2χλμ. Views
  • Robert Lea - The Euclid 'dark universe detective' telescope has revealed new images of the cosmos — and they are remarkable:

    https://www.space.com/euclid-space-telescope-new-images-may-23

    #Euclid #SpaceTelescope #ESA #DarkEnergy #DarkMatter #EarlyReleaseObservations #DeepSky #Galaxies #GalaxyCluster #GravitationalLensing #Infrared #Cosmology #Astrophotography #Astronomy
    Robert Lea - The Euclid 'dark universe detective' telescope has revealed new images of the cosmos — and they are remarkable: https://www.space.com/euclid-space-telescope-new-images-may-23 #Euclid #SpaceTelescope #ESA #DarkEnergy #DarkMatter #EarlyReleaseObservations #DeepSky #Galaxies #GalaxyCluster #GravitationalLensing #Infrared #Cosmology #Astrophotography #Astronomy
    WWW.SPACE.COM
    The Euclid 'dark universe detective' telescope has revealed new images of the cosmos — and they are remarkable
    "It's absolutely amazing. It's just so much more than I ever expected. Euclid will be game-changing for astronomy."
    0 Σχόλια 0 Μοιράστηκε 3χλμ. Views
  • Researchers have identified stars in our Milky Way galaxy that are surrounded by super-advanced alien megastructures known as spheres is a hypothetical megastructure that encompasses a star and captures a large percentage of its solar power output. These structures, first proposed in the Star Trek pilot in 60s, could be built by highly technologically advanced and alien civilizations. The most extreme versions might include a solid sphere or swarms of gigantic structures around the star. If such megastructures exist, we might be able to detect them by looking for infrared excess emissions (IEEs) caused by the heat from the star interacting with the sphere."

    Researchers have identified stars in our Milky Way galaxy that are surrounded by super-advanced alien megastructures known as spheres is a hypothetical megastructure that encompasses a star and captures a large percentage of its solar power output. These structures, first proposed in the Star Trek pilot in 60s, could be built by highly technologically advanced and alien civilizations. The most extreme versions might include a solid sphere or swarms of gigantic structures around the star. If such megastructures exist, we might be able to detect them by looking for infrared excess emissions (IEEs) caused by the heat from the star interacting with the sphere."
    0 Σχόλια 0 Μοιράστηκε 1χλμ. Views
  • W1935, a brown dwarf
    known as W1935 is more massive than Jupiter, and exhibited infrared emissions from methane — a finding that has puzzled scientists due to the brown dwarf's cold nature and lack of a host star to provide energy for such atmospheric phenomena.

    W1935, a brown dwarf located 47 light-years from Earth, has intrigued astronomers with its unexpected behavior. Despite being more massive than Jupiter and lacking a host star, it exhibits infrared emissions from methane in its upper atmosphere. This phenomenon is puzzling because the brown dwarf is cold and lacks an obvious energy source to fuel such atmospheric processes

    On Earth, aurorae are created when energetic particles from the Sun interact with our magnetic field, producing captivating curtains of light near the poles. Similarly, Jupiter and Saturn have auroral processes, including contributions from their active moons like Io and Enceladus. However, for isolated brown dwarfs like W1935, the absence of a stellar wind complicates the explanation for the extra energy needed to produce methane glow. Scientists speculate that internal processes or interactions with interstellar plasma or nearby active moons may play a role in this intriguing phenomenon.

    The discovery of methane emission on W1935 is akin to a fascinating detective story, unraveling the mysteries of celestial phenomena.

    Mysterious aurora over 'failed star' 'shocking' discovery that transformed into pure fantasy the astrophysics of today and education into university worldwide.

    The recent discovery of a mysterious aurora around a brown dwarf has left astronomers astounded. This celestial body, known as W1935, is larger than Jupiter and exhibits infrared emissions from methane in its upper atmosphere. What makes this finding even more intriguing is that W1935 lacks a host star to provide energy for such atmospheric phenomena.

    Let’s delve into the captivating details:

    Brown Dwarfs: These enigmatic objects are larger than gas giant planets but smaller than stars. They form similarly to stars, arising from collapsing clouds of gas and dust. Brown dwarfs are often isolated, just like W1935. Their nickname, “failed stars,” stems from their inability to sustain nuclear fusion like main-sequence stars.

    Auroras: On Earth, we witness auroras as the mesmerizing northern and southern lights. These luminous displays occur when charged solar particles interact with molecules in our atmosphere. Auroras are also observed on other planets, such as Jupiter and Saturn, and over active moons like Io and Enceladus. However, W1935’s aurora is baffling because there are no nearby stars to supply charged particles for this phenomenon .

    Infrared Clues: The James Webb Space Telescope (JWST) detected the potential aurora over W1935 through infrared emissions from methane. Similar emissions occur on Jupiter and Saturn due to charged particles heating their atmospheres and creating aurorae. Scientists speculate that internal processes within W1935 or interactions with interstellar plasma might be responsible for its mysterious glow. Alternatively, an influx of particles from a nearby active moon could play a role.

    This discovery transforms the astrophysics of today, sparking curiosity and wonder across universities worldwide. The universe continues to surprise us with its hidden secrets, inviting us to explore further into the cosmic unknown.

    W1935, a brown dwarf known as W1935 is more massive than Jupiter, and exhibited infrared emissions from methane — a finding that has puzzled scientists due to the brown dwarf's cold nature and lack of a host star to provide energy for such atmospheric phenomena. W1935, a brown dwarf located 47 light-years from Earth, has intrigued astronomers with its unexpected behavior. Despite being more massive than Jupiter and lacking a host star, it exhibits infrared emissions from methane in its upper atmosphere. This phenomenon is puzzling because the brown dwarf is cold and lacks an obvious energy source to fuel such atmospheric processes On Earth, aurorae are created when energetic particles from the Sun interact with our magnetic field, producing captivating curtains of light near the poles. Similarly, Jupiter and Saturn have auroral processes, including contributions from their active moons like Io and Enceladus. However, for isolated brown dwarfs like W1935, the absence of a stellar wind complicates the explanation for the extra energy needed to produce methane glow. Scientists speculate that internal processes or interactions with interstellar plasma or nearby active moons may play a role in this intriguing phenomenon. The discovery of methane emission on W1935 is akin to a fascinating detective story, unraveling the mysteries of celestial phenomena. Mysterious aurora over 'failed star' 'shocking' discovery that transformed into pure fantasy the astrophysics of today and education into university worldwide. The recent discovery of a mysterious aurora around a brown dwarf has left astronomers astounded. This celestial body, known as W1935, is larger than Jupiter and exhibits infrared emissions from methane in its upper atmosphere. What makes this finding even more intriguing is that W1935 lacks a host star to provide energy for such atmospheric phenomena. Let’s delve into the captivating details: Brown Dwarfs: These enigmatic objects are larger than gas giant planets but smaller than stars. They form similarly to stars, arising from collapsing clouds of gas and dust. Brown dwarfs are often isolated, just like W1935. Their nickname, “failed stars,” stems from their inability to sustain nuclear fusion like main-sequence stars. Auroras: On Earth, we witness auroras as the mesmerizing northern and southern lights. These luminous displays occur when charged solar particles interact with molecules in our atmosphere. Auroras are also observed on other planets, such as Jupiter and Saturn, and over active moons like Io and Enceladus. However, W1935’s aurora is baffling because there are no nearby stars to supply charged particles for this phenomenon . Infrared Clues: The James Webb Space Telescope (JWST) detected the potential aurora over W1935 through infrared emissions from methane. Similar emissions occur on Jupiter and Saturn due to charged particles heating their atmospheres and creating aurorae. Scientists speculate that internal processes within W1935 or interactions with interstellar plasma might be responsible for its mysterious glow. Alternatively, an influx of particles from a nearby active moon could play a role. This discovery transforms the astrophysics of today, sparking curiosity and wonder across universities worldwide. The universe continues to surprise us with its hidden secrets, inviting us to explore further into the cosmic unknown.
    0 Σχόλια 0 Μοιράστηκε 4χλμ. Views
  • Simon Kelly & Emma Midgley - Combating Olive Oil Fraud with Nuclear Innovations:

    https://www.iaea.org/newscenter/news/combating-olive-oil-fraud-with-nuclear-innovations

    #OliveOil #Authenticity #NearInfrared #Infrared #Spectroscopy #FourierTransform #GasChromatography #Chromatography #Atoms4Food #IAEA #Agriculture #Physics
    Simon Kelly & Emma Midgley - Combating Olive Oil Fraud with Nuclear Innovations: https://www.iaea.org/newscenter/news/combating-olive-oil-fraud-with-nuclear-innovations #OliveOil #Authenticity #NearInfrared #Infrared #Spectroscopy #FourierTransform #GasChromatography #Chromatography #Atoms4Food #IAEA #Agriculture #Physics
    WWW.IAEA.ORG
    Combating Olive Oil Fraud with Nuclear Innovations
    The International Atomic Energy Agency (IAEA) is developing new and rapid methods to rapidly screen and authenticate the origin of foods like extra virgin olive oil.
    0 Σχόλια 0 Μοιράστηκε 3χλμ. Views
  • Protoplanetary disks play a crucial role in the formation of planets around young stars
    u/tonynetone1 - This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor
    This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor
    New measurements by NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument) have detected water vapor in the system’s inner disk

    Webb is solving mysteries in our solar system, looking beyond to distant AND mysterious structures THIS technology is an international program led by NASA with its partners

    Protoplanetary disks play a crucial role in the formation of planets around young stars. These disks are composed of gas and dust particles, and they orbit a central young star. Over time, the material in the disk starts to clump together due to gravitational forces, eventually forming planets and other celestial bodies.

    The recent detection of water vapor in the protoplanetary disk of the PDS 70 system is indeed significant for several reasons. The PDS 70 system is located approximately 370 light-years away from Earth, and it has been a focus of study for astronomers using advanced observational techniques.

    The presence of water vapor in the terrestrial zone of the protoplanetary disk is noteworthy because this region is considered the prime location for the formation of rocky planets. The terrestrial zone, also known as the habitable zone or Goldilocks zone, is characterized by conditions suitable for the formation of planets with solid surfaces, where water can exist in liquid form. The detection of water vapor in this zone suggests the possibility of water being available during the formation of rocky planets in the PDS 70 system.

    Understanding the composition of protoplanetary disks and the presence of key molecules like water vapor provides valuable insights into the conditions that lead to the formation of planetary systems. It contributes to our broader understanding of the processes involved in planetary formation and the potential for habitable environments in other star systems. This kind of research helps astronomers piece together the puzzle of how planetary systems, including our own solar system, come into existence. Water vapor can indeed be present in the atmospheres of exoplanets (planets outside of our solar system).

    Detecting water vapor in exoplanet atmospheres is a significant area of research in the field of exoplanet studies. Scientists use various methods to detect the presence of water vapor on distant exoplanets. One commonly used technique is spectroscopy, which involves analyzing the light from the star that passes through the exoplanet's atmosphere. This analysis allows researchers to identify the presence of specific molecules, including water vapor, by looking for characteristic absorption patterns in the spectrum. The discovery of water vapor in an exoplanet's atmosphere can provide valuable insights into the planet's potential habitability. Water is a crucial ingredient for life as we know it, so the presence of water vapor on exoplanets is often considered an essential factor in determining their potential habitability.

    However, it is important to note that the detection of water vapor does not directly imply the presence of liquid water or the habitability of an exoplanet. Many other factors, such as the planet's distance from its star, its composition, and the overall environmental conditions, need to be considered to assess whether an exoplanet may have the right conditions to support life. Ongoing research and technological advancements in space telescopes and spectroscopic techniques are continually improving our understanding of exoplanet atmospheres, including the presence of water vapor. With time, we expect to gather more data and learn more about the atmospheres of exoplanets and their potential for hosting water vapor and, possibly, life.
    Protoplanetary disks play a crucial role in the formation of planets around young stars u/tonynetone1 - This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor New measurements by NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument) have detected water vapor in the system’s inner disk Webb is solving mysteries in our solar system, looking beyond to distant AND mysterious structures THIS technology is an international program led by NASA with its partners Protoplanetary disks play a crucial role in the formation of planets around young stars. These disks are composed of gas and dust particles, and they orbit a central young star. Over time, the material in the disk starts to clump together due to gravitational forces, eventually forming planets and other celestial bodies. The recent detection of water vapor in the protoplanetary disk of the PDS 70 system is indeed significant for several reasons. The PDS 70 system is located approximately 370 light-years away from Earth, and it has been a focus of study for astronomers using advanced observational techniques. The presence of water vapor in the terrestrial zone of the protoplanetary disk is noteworthy because this region is considered the prime location for the formation of rocky planets. The terrestrial zone, also known as the habitable zone or Goldilocks zone, is characterized by conditions suitable for the formation of planets with solid surfaces, where water can exist in liquid form. The detection of water vapor in this zone suggests the possibility of water being available during the formation of rocky planets in the PDS 70 system. Understanding the composition of protoplanetary disks and the presence of key molecules like water vapor provides valuable insights into the conditions that lead to the formation of planetary systems. It contributes to our broader understanding of the processes involved in planetary formation and the potential for habitable environments in other star systems. This kind of research helps astronomers piece together the puzzle of how planetary systems, including our own solar system, come into existence. Water vapor can indeed be present in the atmospheres of exoplanets (planets outside of our solar system). Detecting water vapor in exoplanet atmospheres is a significant area of research in the field of exoplanet studies. Scientists use various methods to detect the presence of water vapor on distant exoplanets. One commonly used technique is spectroscopy, which involves analyzing the light from the star that passes through the exoplanet's atmosphere. This analysis allows researchers to identify the presence of specific molecules, including water vapor, by looking for characteristic absorption patterns in the spectrum. The discovery of water vapor in an exoplanet's atmosphere can provide valuable insights into the planet's potential habitability. Water is a crucial ingredient for life as we know it, so the presence of water vapor on exoplanets is often considered an essential factor in determining their potential habitability. However, it is important to note that the detection of water vapor does not directly imply the presence of liquid water or the habitability of an exoplanet. Many other factors, such as the planet's distance from its star, its composition, and the overall environmental conditions, need to be considered to assess whether an exoplanet may have the right conditions to support life. Ongoing research and technological advancements in space telescopes and spectroscopic techniques are continually improving our understanding of exoplanet atmospheres, including the presence of water vapor. With time, we expect to gather more data and learn more about the atmospheres of exoplanets and their potential for hosting water vapor and, possibly, life.
    0 Σχόλια 0 Μοιράστηκε 4χλμ. Views
  • That's your cell phone in your pocket!
    Or could it be your "smart" TV?
    Maybe the Ring Doorbell
    Perhaps it's Alexa or Siri
    The Dryer!
    Ipad....

    Well... You get the point!
    And it's ALL being stored in a government database in Utah
    Every text and voice call, your location history, those sneaky infrared snapshots it takes like every 5 seconds but you cannot see it, it's in infrared!

    Spy devices, every one of them another bar in your prison cell
    That's your cell phone in your pocket! Or could it be your "smart" TV? Maybe the Ring Doorbell Perhaps it's Alexa or Siri The Dryer! Ipad.... Well... You get the point! And it's ALL being stored in a government database in Utah Every text and voice call, your location history, those sneaky infrared snapshots it takes like every 5 seconds but you cannot see it, it's in infrared! Spy devices, every one of them another bar in your prison cell
    0 Σχόλια 0 Μοιράστηκε 2χλμ. Views
Αναζήτηση αποτελεσμάτων
Προωθημένο

We are 100% funded for October.

Thanks to everyone who helped out. 🥰

Xephula monthly operating expenses for 2024 - Server: $143/month - Backup Software: $6/month - Object Storage: $6/month - SMTP Service: $10/month - Stripe Processing Fees: ~$10/month - Total: $175/month

Xephula Funding Meter

Please Donate Here