• NASA has a rigorous and well-established process for evaluating the continuation of projects, especially those related to scientific research and space exploration, including the development of telescopes and spacecraft. This process typically involves a thorough assessment of scientific objectives, technical feasibility, budget considerations, and overall mission priorities.

    Claims that spacecraft projects have become more challenging due to the quality of engineers and astronomers involved are likely to be scrutinized within this evaluation process. However, it's important to note that NASA consistently works with highly skilled professionals, including engineers and scientists, who undergo rigorous training and are held to high standards of competence and expertise.

    If concerns arise about the quality of personnel involved in spacecraft projects, NASA would likely address these issues through measures such as additional training, enhanced oversight, or adjustments to team composition. Ultimately, decisions about the continuation of projects would be based on a comprehensive analysis of various factors, including scientific merit, technical feasibility, resource availability, and the potential for achieving mission objectives.


    NASA has a long-standing process for evaluating whether to continue projects on science and costs of next telescopes took the issue with the claims that spacecrafts have become more difficult because of increasing bad engineers and Astronomers.

    NASA has a rigorous and well-established process for evaluating the continuation of projects, especially those related to scientific research and space exploration, including the development of telescopes and spacecraft. This process typically involves a thorough assessment of scientific objectives, technical feasibility, budget considerations, and overall mission priorities. Claims that spacecraft projects have become more challenging due to the quality of engineers and astronomers involved are likely to be scrutinized within this evaluation process. However, it's important to note that NASA consistently works with highly skilled professionals, including engineers and scientists, who undergo rigorous training and are held to high standards of competence and expertise. If concerns arise about the quality of personnel involved in spacecraft projects, NASA would likely address these issues through measures such as additional training, enhanced oversight, or adjustments to team composition. Ultimately, decisions about the continuation of projects would be based on a comprehensive analysis of various factors, including scientific merit, technical feasibility, resource availability, and the potential for achieving mission objectives. NASA has a long-standing process for evaluating whether to continue projects on science and costs of next telescopes took the issue with the claims that spacecrafts have become more difficult because of increasing bad engineers and Astronomers.
    0 Comments 0 Shares 738 Views 5
  • March 2024 NASA considering budget cuts for Hubble and Chandra space telescopes. NASA is considering cutting the budget of two of its biggest space ... Among the changes included in the 2025 budget proposal is canceling the Geospace Dynamics Constellation
    March 2024 NASA considering budget cuts for Hubble and Chandra space telescopes. NASA is considering cutting the budget of two of its biggest space ... Among the changes included in the 2025 budget proposal is canceling the Geospace Dynamics Constellation
    0 Comments 0 Shares 274 Views
  • Protoplanetary disks play a crucial role in the formation of planets around young stars
    u/tonynetone1 - This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor
    This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor
    New measurements by NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument) have detected water vapor in the system’s inner disk

    Webb is solving mysteries in our solar system, looking beyond to distant AND mysterious structures THIS technology is an international program led by NASA with its partners

    Protoplanetary disks play a crucial role in the formation of planets around young stars. These disks are composed of gas and dust particles, and they orbit a central young star. Over time, the material in the disk starts to clump together due to gravitational forces, eventually forming planets and other celestial bodies.

    The recent detection of water vapor in the protoplanetary disk of the PDS 70 system is indeed significant for several reasons. The PDS 70 system is located approximately 370 light-years away from Earth, and it has been a focus of study for astronomers using advanced observational techniques.

    The presence of water vapor in the terrestrial zone of the protoplanetary disk is noteworthy because this region is considered the prime location for the formation of rocky planets. The terrestrial zone, also known as the habitable zone or Goldilocks zone, is characterized by conditions suitable for the formation of planets with solid surfaces, where water can exist in liquid form. The detection of water vapor in this zone suggests the possibility of water being available during the formation of rocky planets in the PDS 70 system.

    Understanding the composition of protoplanetary disks and the presence of key molecules like water vapor provides valuable insights into the conditions that lead to the formation of planetary systems. It contributes to our broader understanding of the processes involved in planetary formation and the potential for habitable environments in other star systems. This kind of research helps astronomers piece together the puzzle of how planetary systems, including our own solar system, come into existence. Water vapor can indeed be present in the atmospheres of exoplanets (planets outside of our solar system).

    Detecting water vapor in exoplanet atmospheres is a significant area of research in the field of exoplanet studies. Scientists use various methods to detect the presence of water vapor on distant exoplanets. One commonly used technique is spectroscopy, which involves analyzing the light from the star that passes through the exoplanet's atmosphere. This analysis allows researchers to identify the presence of specific molecules, including water vapor, by looking for characteristic absorption patterns in the spectrum. The discovery of water vapor in an exoplanet's atmosphere can provide valuable insights into the planet's potential habitability. Water is a crucial ingredient for life as we know it, so the presence of water vapor on exoplanets is often considered an essential factor in determining their potential habitability.

    However, it is important to note that the detection of water vapor does not directly imply the presence of liquid water or the habitability of an exoplanet. Many other factors, such as the planet's distance from its star, its composition, and the overall environmental conditions, need to be considered to assess whether an exoplanet may have the right conditions to support life. Ongoing research and technological advancements in space telescopes and spectroscopic techniques are continually improving our understanding of exoplanet atmospheres, including the presence of water vapor. With time, we expect to gather more data and learn more about the atmospheres of exoplanets and their potential for hosting water vapor and, possibly, life.
    Protoplanetary disks play a crucial role in the formation of planets around young stars u/tonynetone1 - This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor This is an AI concept portrays inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor New measurements by NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument) have detected water vapor in the system’s inner disk Webb is solving mysteries in our solar system, looking beyond to distant AND mysterious structures THIS technology is an international program led by NASA with its partners Protoplanetary disks play a crucial role in the formation of planets around young stars. These disks are composed of gas and dust particles, and they orbit a central young star. Over time, the material in the disk starts to clump together due to gravitational forces, eventually forming planets and other celestial bodies. The recent detection of water vapor in the protoplanetary disk of the PDS 70 system is indeed significant for several reasons. The PDS 70 system is located approximately 370 light-years away from Earth, and it has been a focus of study for astronomers using advanced observational techniques. The presence of water vapor in the terrestrial zone of the protoplanetary disk is noteworthy because this region is considered the prime location for the formation of rocky planets. The terrestrial zone, also known as the habitable zone or Goldilocks zone, is characterized by conditions suitable for the formation of planets with solid surfaces, where water can exist in liquid form. The detection of water vapor in this zone suggests the possibility of water being available during the formation of rocky planets in the PDS 70 system. Understanding the composition of protoplanetary disks and the presence of key molecules like water vapor provides valuable insights into the conditions that lead to the formation of planetary systems. It contributes to our broader understanding of the processes involved in planetary formation and the potential for habitable environments in other star systems. This kind of research helps astronomers piece together the puzzle of how planetary systems, including our own solar system, come into existence. Water vapor can indeed be present in the atmospheres of exoplanets (planets outside of our solar system). Detecting water vapor in exoplanet atmospheres is a significant area of research in the field of exoplanet studies. Scientists use various methods to detect the presence of water vapor on distant exoplanets. One commonly used technique is spectroscopy, which involves analyzing the light from the star that passes through the exoplanet's atmosphere. This analysis allows researchers to identify the presence of specific molecules, including water vapor, by looking for characteristic absorption patterns in the spectrum. The discovery of water vapor in an exoplanet's atmosphere can provide valuable insights into the planet's potential habitability. Water is a crucial ingredient for life as we know it, so the presence of water vapor on exoplanets is often considered an essential factor in determining their potential habitability. However, it is important to note that the detection of water vapor does not directly imply the presence of liquid water or the habitability of an exoplanet. Many other factors, such as the planet's distance from its star, its composition, and the overall environmental conditions, need to be considered to assess whether an exoplanet may have the right conditions to support life. Ongoing research and technological advancements in space telescopes and spectroscopic techniques are continually improving our understanding of exoplanet atmospheres, including the presence of water vapor. With time, we expect to gather more data and learn more about the atmospheres of exoplanets and their potential for hosting water vapor and, possibly, life.
    0 Comments 0 Shares 2228 Views
  • Norbert Junkes - Astronomers capture formation of a powerful cosmic jet:

    https://phys.org/news/2023-10-astronomers-capture-formation-powerful-cosmic.html

    #PlasmaJet #HelicalFilaments #MaxPlanckInstitute #RadioTelescopes #RadioAstronomy #MPIfR #Blazar #3C279 #SMBH #BlackHole #ActiveGalacticNuclei #AGN #RadioAstron #Interferometry #VLBI #Astrophysics #Astronomy
    Norbert Junkes - Astronomers capture formation of a powerful cosmic jet: https://phys.org/news/2023-10-astronomers-capture-formation-powerful-cosmic.html #PlasmaJet #HelicalFilaments #MaxPlanckInstitute #RadioTelescopes #RadioAstronomy #MPIfR #Blazar #3C279 #SMBH #BlackHole #ActiveGalacticNuclei #AGN #RadioAstron #Interferometry #VLBI #Astrophysics #Astronomy
    PHYS.ORG
    Astronomers capture formation of a powerful cosmic jet
    Using a network of radio telescopes on Earth and in space, astronomers have captured the most detailed view ever of a jet of plasma from a supermassive black hole. The jet travels at nearly the speed of light and shows complex, twisted patterns near its source. These patterns challenge the standard theory that has been used for 40 years to explain how these jets form and change over time.
    0 Comments 0 Shares 4961 Views
  • Xinhua - New image shows black hole expelling powerful jet:

    http://en.people.cn/n3/2023/0428/c90000-20012535.html

    #SupermassiveBlackHole #BlackHole #SMBH #M87 #TelescopeArray #Telescopes #GMVA #ALMA #GLT #Astrophysics #Astronomy
    Xinhua - New image shows black hole expelling powerful jet: http://en.people.cn/n3/2023/0428/c90000-20012535.html #SupermassiveBlackHole #BlackHole #SMBH #M87 #TelescopeArray #Telescopes #GMVA #ALMA #GLT #Astrophysics #Astronomy
    EN.PEOPLE.CN
    New image shows black hole expelling powerful jet - People's Daily Online
    The image released on April 26, 2023 shows the jet and shadow of the black hole at the center of th
    0 Comments 0 Shares 2056 Views
  • Xinhua - China's space telescopes precisely measure brightest gamma-ray burst:

    http://en.people.cn/n3/2023/0330/c90000-10229386.html

    #GammaRayBurst #GRB #CAS #SpaceTelescopes #GRB221009A #Astrophysics #Astronomy
    Xinhua - China's space telescopes precisely measure brightest gamma-ray burst: http://en.people.cn/n3/2023/0330/c90000-10229386.html #GammaRayBurst #GRB #CAS #SpaceTelescopes #GRB221009A #Astrophysics #Astronomy
    EN.PEOPLE.CN
    China's space telescopes precisely measure brightest gamma-ray burst - People's Daily Online
    Zhang Shuangnan (3rd L), lead scientist of China's Hard X-ray Modulation Telescope (HXMT), work
    0 Comments 0 Shares 1479 Views
  • Rappahannock County Park in Virginia, recognized in February of 2019 by the International Dark-Sky Association as a Dark Sky Park with a Silver Tier rating, hosted a Dark Skies night on Saturday that featured a presentation by James Granahan and telescopes on the field. Some of the brighter objects that can be viewed from the park in October include M2, M15, M29, and the Double Cluster; Jupiter will reach its opposition on Monday, the giant planet's closest orbital approach and brightest appearance in our night sky.

    #RappahannockCounty #IDA #DarkSkies #DarkSkyPark #DarkSkyPlaces #NightSky #Astronomy
    Rappahannock County Park in Virginia, recognized in February of 2019 by the International Dark-Sky Association as a Dark Sky Park with a Silver Tier rating, hosted a Dark Skies night on Saturday that featured a presentation by James Granahan and telescopes on the field. Some of the brighter objects that can be viewed from the park in October include M2, M15, M29, and the Double Cluster; Jupiter will reach its opposition on Monday, the giant planet's closest orbital approach and brightest appearance in our night sky. #RappahannockCounty #IDA #DarkSkies #DarkSkyPark #DarkSkyPlaces #NightSky #Astronomy
    0 Comments 0 Shares 1856 Views
Sponsored

We are, so far, 80% funded for April. I am matching donations dollar for dollar this month. Thanks to everyone who helped out. 🥰

Xephula monthly operating expenses for 2024 - Server: $143/month - Backup Software: $6/month - Object Storage: $6/month - SMTP Service: $10/month - Stripe Processing Fees: ~$10/month - Total: $175/month

Xephula Funding Meter

Please Donate Here